#include <windows.h>
#include "locmath.h"
#include "vector.h"
#include "quat.h"
#include "vertex.h"
#include "mmgr.h"
Go to the source code of this file.
Functions | |
void | LoadIdentity (float m[]) |
void | CopyMatrix (float m[], float n[]) |
void | MultMatrix (float m[], float n[]) |
void | MatrixInverse (float m[]) |
QUAT | AxisAngleToMatrix (VECTOR axis, float theta, float m[16]) |
float | DotProduct (VECTOR vec1, VECTOR vec2) |
VECTOR | CrossVector (VECTOR vec1, VECTOR vec2) |
void | EulerToQuat (float roll, float pitch, float yaw, QUAT *quat) |
float | MagnitudeQuat (QUAT q1) |
QUAT | NormaliseQuat (QUAT q1) |
void | QuatToMatrix (QUAT quat, float m[16]) |
QUAT | MultQuat (QUAT q1, QUAT q2) |
VERTEX | GetNorm (float x1, float y1, float z1, float x2, float y2, float z2, float x3, float y3, float z3) |
GLfloat | MagnitudeVector (VECTOR vec1) |
VECTOR | GetUnitVector (VECTOR vector) |
VECTOR | GetEdgeVector (VECTOR point1, VECTOR point2) |
|
Definition at line 166 of file locmath.cpp. References QUAT::w, QUAT::x, VECTOR::x, QUAT::y, VECTOR::y, QUAT::z, and VECTOR::z.
00167 { 00168 QUAT q; 00169 float halfTheta = theta * 0.5; 00170 float cosHalfTheta = cos(halfTheta); 00171 float sinHalfTheta = sin(halfTheta); 00172 float xs, ys, zs, wx, wy, wz, xx, xy, xz, yy, yz, zz; 00173 q.x = axis.x * sinHalfTheta; 00174 q.y = axis.y * sinHalfTheta; 00175 q.z = axis.z * sinHalfTheta; 00176 q.w = cosHalfTheta; 00177 xs = q.x * 2; ys = q.y * 2; zs = q.z * 2; 00178 wx = q.w * xs; wy = q.w * ys; wz = q.w * zs; 00179 xx = q.x * xs; xy = q.x * ys; xz = q.x * zs; 00180 yy = q.y * ys; yz = q.y * zs; zz = q.z * zs; 00181 m[0] = 1 - (yy + zz); 00182 m[1] = xy - wz; 00183 m[2] = xz + wy; 00184 m[4] = xy + wz; 00185 m[5] = 1 - (xx + zz); 00186 m[6] = yz - wx; 00187 m[8] = xz - wy; 00188 m[9] = yz + wx; 00189 m[10] = 1 - (xx + yy); 00190 /* Fill in remainder of 4x4 homogeneous transform matrix. */ 00191 m[12] = m[13] = m[14] = m[3] = m[7] = m[11] = 0; 00192 m[15] = 1; 00193 return (q); 00194 } |
|
Definition at line 31 of file locmath.cpp. Referenced by MatrixInverse(), and MultMatrix().
00032 { 00033 m[0 ] = n[0 ]; 00034 m[1 ] = n[1 ]; 00035 m[2 ] = n[2 ]; 00036 m[3 ] = n[3 ]; 00037 m[4 ] = n[4 ]; 00038 m[5 ] = n[5 ]; 00039 m[6 ] = n[6 ]; 00040 m[7 ] = n[7 ]; 00041 m[8 ] = n[8 ]; 00042 m[9 ] = n[9 ]; 00043 m[10] = n[10]; 00044 m[11] = n[11]; 00045 m[12] = n[12]; 00046 m[13] = n[13]; 00047 m[14] = n[14]; 00048 m[15] = n[15]; 00049 } |
|
Definition at line 211 of file locmath.cpp. References VECTOR::x, VECTOR::y, and VECTOR::z. Referenced by ClassifyInvertedPortal(), ClassifyPortal(), DrawFire(), FindCurrentLeaf(), FindVisibleLeaves(), GetEdgeIntersection(), InvertPortals(), MultQuat(), RenderBSP(), SplitPolygon(), and SplitPortal().
00212 { 00213 /* 00214 Cross Product of Two Vectors. 00215 00216 a × b = ( a.y * b.z - a.z * b.y, 00217 00218 a.z * b.x - a.x * b.z, 00219 00220 a.x * b.y - a.y * b.x ) 00221 00222 | a × b | = |a| * |b| * sin(ø) 00223 */ 00224 VECTOR vec3; 00225 vec3.x = vec1.y * vec2.z - vec1.z * vec2.y; 00226 vec3.y = vec1.z * vec2.x - vec1.x * vec2.z; 00227 vec3.z = vec1.x * vec2.y - vec1.y * vec2.x; 00228 return vec3; 00229 } |
|
Definition at line 196 of file locmath.cpp. References VECTOR::x, VECTOR::y, and VECTOR::z. Referenced by CheckForCollision(), CheckPointInTriangle(), ClassifyPoint(), ClosestPointOnLine(), CreateLightmaps(), GetEdgeIntersection(), IntersectRayPlane(), IntersectRaySphere(), and MultQuat().
00197 { 00198 /* 00199 Dot Product of two Vectors. 00200 00201 U = (Ux, Uy, Uz) 00202 V = (Vx, Vy, Vz) 00203 U*V = UxVx + UyVy + UzVz 00204 U*V = |U||V|cos(t) (where t is the angle theta between the two vectors) 00205 */ 00206 float dot; 00207 dot = vec1.x * vec2.x + vec1.y * vec2.y + vec1.z * vec2.z; 00208 return dot; 00209 } |
|
Definition at line 231 of file locmath.cpp. References QUAT::w, QUAT::x, QUAT::y, and QUAT::z.
00232 { 00233 /* 00234 Euler Angle to Quarternion. 00235 00236 q = qyaw qpitch qroll where: 00237 00238 qyaw = [cos(f /2), (0, 0, sin(f /2)] 00239 qpitch = [cos (q/2), (0, sin(q/2), 0)] 00240 qroll = [cos (y/2), (sin(y/2), 0, 0)] 00241 */ 00242 float cr, cp, cy, sr, sp, sy, cpcy, spsy; // calculate trig identities 00243 cr = cos(roll/2); 00244 cp = cos(pitch/2); 00245 cy = cos(yaw/2); 00246 sr = sin(roll/2); 00247 sp = sin(pitch/2); 00248 sy = sin(yaw/2); 00249 cpcy = cp * cy; 00250 spsy = sp * sy; 00251 quat->w = cr * cpcy + sr * spsy; 00252 quat->x = sr * cpcy - cr * spsy; 00253 quat->y = cr * sp * cy + sr * cp * sy; 00254 quat->z = cr * cp * sy - sr * sp * cy; 00255 } |
|
Definition at line 392 of file locmath.cpp. References VECTOR::x, VECTOR::y, and VECTOR::z.
|
|
Definition at line 343 of file locmath.cpp. References VERTEX::nx, VERTEX::ny, and VERTEX::nz.
00344 { 00345 float ux; 00346 float uy; 00347 float uz; 00348 float vx; 00349 float vy; 00350 float vz; 00351 VERTEX temp_vertex; 00352 ux = x1 - x2; 00353 uy = y1 - y2; 00354 uz = z1 - z2; 00355 vx = x3 - x2; 00356 vy = y3 - y2; 00357 vz = z3 - z2; 00358 temp_vertex.nx = (uy*vz)-(vy*uz); 00359 temp_vertex.ny = (uz*vx)-(vz*ux); 00360 temp_vertex.nz = (ux*vy)-(vx*uy); 00361 return temp_vertex; 00362 } |
|
Definition at line 369 of file locmath.cpp. References VECTOR::x, VECTOR::y, and VECTOR::z. Referenced by CheckForCollision(), CheckPointInTriangle(), ClosestPointOnLine(), and TangentPlaneNormalOfEllipsoid().
00370 { 00371 // Reduces a normal vector specified as a set of three coordinates, 00372 // to a unit normal vector of length one. 00373 00374 // Calculate the length of the vector 00375 float length = (float) sqrt(( vector.x * vector.x) + 00376 ( vector.y * vector.y) + 00377 ( vector.z * vector.z) ); 00378 00379 // Keep the program from blowing up by providing an exceptable 00380 // value for vectors that may calculated too close to zero. 00381 if(length == 0.0f) 00382 length = 1.0f; 00383 00384 // Dividing each element by the length will result in a 00385 // unit normal vector. 00386 vector.x /= length; 00387 vector.y /= length; 00388 vector.z /= length; 00389 return vector; 00390 } |
|
Definition at line 8 of file locmath.cpp.
00009 { 00010 m[0]=1.0f; 00011 m[1]=0.0f; 00012 m[2]=0.0f; 00013 m[3]=0.0f; 00014 00015 m[4]=0.0f; 00016 m[5]=1.0f; 00017 m[6]=0.0f; 00018 m[7]=0.0f; 00019 00020 m[8]=0.0f; 00021 m[9]=0.0f; 00022 m[10]=1.0f; 00023 m[11]=0.0f; 00024 00025 m[12]=0.0f; 00026 m[13]=0.0f; 00027 m[14]=0.0f; 00028 m[15]=1.0f; 00029 } |
|
Definition at line 257 of file locmath.cpp. References QUAT::w, QUAT::x, QUAT::y, and QUAT::z. Referenced by NormaliseQuat().
|
|
Definition at line 364 of file locmath.cpp. References VECTOR::x, VECTOR::y, and VECTOR::z. Referenced by CheckClipPlanes(), CheckForCollision(), CheckPointInSphere(), ClosestPointOnLine(), ClosestPointOnPolygon(), and IntersectRaySphere().
|
|
Definition at line 137 of file locmath.cpp. References CopyMatrix().
00138 { 00139 float n[16]; 00140 00141 CopyMatrix(n, m); 00142 m[0 ] = n[0 ]; 00143 m[1 ] = n[4 ]; 00144 m[2 ] = n[8 ]; 00145 00146 m[4 ] = n[1 ]; 00147 m[5 ] = n[5 ]; 00148 m[6 ] = n[9 ]; 00149 00150 m[8 ] = n[2 ]; 00151 m[9 ] = n[6 ]; 00152 m[10] = n[10]; 00153 00154 m[12] *= -1.0f; 00155 m[13] *= -1.0f; 00156 m[14] *= -1.0f; 00157 } |
|
Definition at line 51 of file locmath.cpp. References CopyMatrix(). Referenced by CheckClipPlanes().
00052 { 00053 float temp[16]; 00054 00055 CopyMatrix(temp, m); 00056 m[0] = temp[0 ]*n[0 ] 00057 + temp[4 ]*n[1 ] 00058 + temp[8 ]*n[2 ] 00059 + temp[12]*n[3 ]; 00060 00061 m[1] = temp[1 ]*n[0 ] 00062 + temp[5 ]*n[1 ] 00063 + temp[9 ]*n[2 ] 00064 + temp[13]*n[3 ]; 00065 00066 m[2] = temp[2 ]*n[0 ] 00067 + temp[6 ]*n[1 ] 00068 + temp[10]*n[2 ] 00069 + temp[14]*n[3 ]; 00070 00071 m[3] = temp[3 ]*n[0 ] 00072 + temp[7 ]*n[1 ] 00073 + temp[11]*n[2 ] 00074 + temp[15]*n[3 ]; 00075 00076 m[4] = temp[0 ]*n[4 ] 00077 + temp[4 ]*n[5 ] 00078 + temp[8 ]*n[6 ] 00079 + temp[12]*n[7 ]; 00080 00081 m[5] = temp[1 ]*n[4 ] 00082 + temp[5 ]*n[5 ] 00083 + temp[9 ]*n[6 ] 00084 + temp[13]*n[7 ]; 00085 00086 m[6] = temp[2 ]*n[4 ] 00087 + temp[6 ]*n[5 ] 00088 + temp[10]*n[6 ] 00089 + temp[14]*n[7 ]; 00090 00091 m[7] = temp[3 ]*n[4 ] 00092 + temp[7 ]*n[5 ] 00093 + temp[11]*n[6 ] 00094 + temp[15]*n[7 ]; 00095 00096 m[8] = temp[0 ]*n[8 ] 00097 + temp[4 ]*n[9 ] 00098 + temp[8 ]*n[10] 00099 + temp[12]*n[11]; 00100 00101 m[9] = temp[1 ]*n[8 ] 00102 + temp[5 ]*n[9 ] 00103 + temp[9 ]*n[10] 00104 + temp[13]*n[11]; 00105 00106 m[10]= temp[2 ]*n[8 ] 00107 + temp[6 ]*n[9 ] 00108 + temp[10]*n[10] 00109 + temp[14]*n[11]; 00110 00111 m[11]= temp[3 ]*n[8 ] 00112 + temp[7 ]*n[9 ] 00113 + temp[11]*n[10] 00114 + temp[15]*n[11]; 00115 00116 m[12]= temp[0 ]*n[12] 00117 + temp[4 ]*n[13] 00118 + temp[8 ]*n[14] 00119 + temp[12]*n[15]; 00120 00121 m[13]= temp[1 ]*n[12] 00122 + temp[5 ]*n[13] 00123 + temp[9 ]*n[14] 00124 + temp[13]*n[15]; 00125 00126 m[14]= temp[2 ]*n[12] 00127 + temp[6 ]*n[13] 00128 + temp[10]*n[14] 00129 + temp[14]*n[15]; 00130 00131 m[15]= temp[3 ]*n[12] 00132 + temp[7 ]*n[13] 00133 + temp[11]*n[14] 00134 + temp[15]*n[15]; 00135 } |
|
Definition at line 308 of file locmath.cpp. References CrossVector(), DotProduct(), NormaliseQuat(), QUAT::w, VECTOR::x, QUAT::x, VECTOR::y, QUAT::y, VECTOR::z, and QUAT::z.
00309 { 00310 /* 00311 Multiplication of two Quarternions. 00312 00313 qq´ = [ww´ - v · v´, v x v´ + wv´ +w´v] 00314 ( · is vector dot product and x is vector cross product ) 00315 */ 00316 QUAT q3; 00317 VECTOR vectorq1; 00318 VECTOR vectorq2; 00319 vectorq1.x = q1.x; 00320 vectorq1.y = q1.y; 00321 vectorq1.z = q1.z; 00322 vectorq2.x = q2.x; 00323 vectorq2.y = q2.y; 00324 vectorq2.z = q2.z; 00325 00326 VECTOR tempvec1; 00327 VECTOR tempvec2; 00328 VECTOR tempvec3; 00329 q3.w = (q1.w*q2.w) - DotProduct(vectorq1, vectorq2); 00330 tempvec1 = CrossVector(vectorq1, vectorq2); 00331 tempvec2.x = q1.w * q2.x; 00332 tempvec2.y = q1.w * q2.y; 00333 tempvec2.z = q1.w * q2.z; 00334 tempvec3.x = q2.w * q1.x; 00335 tempvec3.y = q2.w * q1.y; 00336 tempvec3.z = q2.w * q1.z; 00337 q3.x = tempvec1.x + tempvec2.x + tempvec3.x; 00338 q3.y = tempvec1.y + tempvec2.y + tempvec3.y; 00339 q3.z = tempvec1.z + tempvec2.z + tempvec3.z; 00340 return NormaliseQuat(q3); 00341 } |
|
Definition at line 262 of file locmath.cpp. References MagnitudeQuat(), QUAT::w, QUAT::x, QUAT::y, and QUAT::z. Referenced by MultQuat().
|
|
Definition at line 274 of file locmath.cpp. References QUAT::w, QUAT::x, QUAT::y, and QUAT::z.
00275 { 00276 float wx, wy, wz, xx, yy, yz, xy, xz, zz, x2, y2, z2; 00277 // calculate coefficients 00278 x2 = quat.x + quat.x; 00279 y2 = quat.y + quat.y; 00280 z2 = quat.z + quat.z; 00281 xx = quat.x * x2; 00282 xy = quat.x * y2; 00283 xz = quat.x * z2; 00284 yy = quat.y * y2; 00285 yz = quat.y * z2; 00286 zz = quat.z * z2; 00287 wx = quat.w * x2; 00288 wy = quat.w * y2; 00289 wz = quat.w * z2; 00290 m[0] = 1.0 - (yy + zz); 00291 m[1] = xy - wz; 00292 m[2] = xz + wy; 00293 m[3] = 0.0; 00294 m[4] = xy + wz; 00295 m[5] = 1.0 - (xx + zz); 00296 m[6] = yz - wx; 00297 m[7] = 0.0; 00298 m[8] = xz - wy; 00299 m[9] = yz + wx; 00300 m[10] = 1.0 - (xx + yy); 00301 m[11] = 0.0; 00302 m[12] = 0; 00303 m[13] = 0; 00304 m[14] = 0; 00305 m[15] = 1; 00306 } |